Letter

Electrical resistivity in the R_5Si_3 systems ($R \equiv La$, Ce, Pr, Nd, Sm)

F. Canepa, S. Cirafici, F. Merlo^{*} and A. Palenzona

Istituto di Chimica Fisica, Corso Europa 26, Università di Genova, Genova (Italy)

(Received July 15, 1993)

1. Introduction

In our previous paper [1], the electrical resistivity (10-800 K) of some heavy RE silicides R_5Si_3 (R = Gd, Tb, Yb, Lu and Y) was examined: for Gd_5Si_3 and Tb_5Si_3 , a magnetic transition was found and a heterogeneous mixed valence was observed for Yb₅Si₃.

In order to study the electronic behaviour of the R_5Si_3 phases in a systematic way, the present work reports the electrical resistivity (10-800 K) of the light R_5Si_3 compounds ($R \equiv La$, Ce, Pr, Nd and Sm).

2. Experimental details

The elements used were commercial products with the nominal purity ranging from 99.4 to 99.6 wt.% for the rare earths and 99.999 wt.% for silicon.

The preparation methods were similar to those described previously [1]. The samples containing La, Ce, Pr, Nd were melted in a high frequency induction furnace. In the case of Sm_5Si_3 , to prevent losses of Sm, the alloy was prepared in a tantalum crucible, closed by arc-welding and heated in the high frequency furnace.

Micrographic examination showed samples to be homogeneous, well crystallized, brittle and compact. Little grain separation (1-2 at.%) was sometimes observed.

X-ray analysis, carried out on a Guinier camera, using silicon as internal standard (a = 5.4308 Å), confirmed the tetragonal Cr₅B₃ type of structure for the La, Ce, Pr and Nd phases, and the hexagonal Mn₅Si₃ type for Sm₅Si₃. Lattice constant values obtained in the present work are reported in Table 1.

0925-8388/94/\$07.00 © 1994 Elsevier Sequoia. All rights reserved SSDI 0925-8388(93)00940-Z

TABLE 1. Lattice parameters values (a,c) and transition points (T^*) for R_5Si_3 compounds

Compound	Structure type	a (Å)	c (Å)	Т* (К)
La ₅ Si ₃	Cr ₅ B ₃	7.965	14.149	_
Ce ₅ Si ₃	Cr ₅ B ₃	7.866	13.783	$(10)^{a}$
Pr ₅ Si ₃	Cr ₅ B ₃	7.812	13.772	47
Nd ₅ Si ₃	Cr_5B_3	7.750	13.780	115
Sm ₅ Si ₃	Mn ₅ Si ₃	8.599	6.503	78

*[7].

Fig. 1. Electrical resistivity of La₅Si₃ as function of temperature.

The electrical resistance was measured by the standard four point d.c. method [2]. The temperature was obtained by an Au + 0.07% Fe-chromel thermocouple.

3. Results and discussion

The thermal dependence of the resistivity for the examined phases is reported in Figs. 1–5.

The strongly negative curvature shown by the nonmagnetic La₅Si₃ was also observed in other La-systems, such as LaAl₂ [3], LaRh₂ [4], LaCu₆ [5] and LaAg [2]. This not purely phononic behaviour can occur when the Fermi level lies in a region of a rapidly falling density of states [6]. A similar trend was also observed for the other non-magnetic Lu₅Si₃ and Y₅Si₃ [1], but in these cases the non-phononic contribution was one order of magnitude smaller than in La₅Si₃.

^{*}Author to whom correspondence should be addressed.

Letter

Fig. 2. Electrical resistivity of Ce₅Si₃ as function of temperature.

Fig. 3. Electrical resistivity of Pr₅Si₃ as function of temperature.

As can be seen in Figs. 2, 3 and 4 the Pr, Nd and Sm compounds show a sharp transition temperature at 47 K, 115 K and 78 K respectively. The specific heat measurements reported by Kontani *et al.* [7] for Ce₃Si₃ point out two transition temperatures at 2.5 K and 10 K. The beginning of the highest temperature was detected in the present resistivity data (Fig. 2). Above the respective transition temperatures, Ce₅Si₃ and Pr₅Si₃ show a negative curvature as found in La₅Si₃.

Most probably, the transformation points observed for the Pr, Nd and Sm phases should have a magnetic origin. Considering that the point at 10 K already observed for Ce_5Si_3 and partially confirmed here, is ascribed by magnetic data to an order-disorder transition to the antiferromagnetic state [7], we can suppose

Fig. 4. Electrical resistivity of Nd₅Si₃ as function of temperature.

Fig. 5. Electrical resistivity of Sm₅Si₃ as function of temperature.

the onset of antiferromagnetism also for Pr_5Si_3 and Nd_5Si_3 . The occurrence of a magnetic transition was reported for Nd_5Si_3 , where the antiferromagnetic susceptibility behaviour with a positive Weiss constant was ascribed to a helical spin order [8].

A different hypothesis can be made for Sm_5Si_3 , as the magnetic interaction in this compound should be like those of the other Mn_5Si_3 -type R_5Si_3 phases. Actually, there is a close resemblance between the resistivity behaviour of Sm_5Si_3 and Gd_5Si_3 or Tb_5Si_3 [1], both in the form of the curve around the transition point and in the nearly constant values at higher temperatures. The same type of magnetic order probably occurs in these three systems, namely a helimagnetic structure with ferromagnetic and antiferromagnetic components, similar to that determined by neutron diffraction data for Tb_5Si_3 [9].

Acknowledgement

This work was supported by Italian CNR under Progetto Finalizzato Materiali Speciali per Tecnologie Avanzate.

References

1 F. Canepa, S. Cirafici, F. Merlo and A. Palenzona, J. Magn. Magn. Mater., 118 (1993) 182.

- 2 F. Merlo and F. Canepa, J. Phys.: F, 17 (1987) 2373.
- 3 E. Bauer, E. Gratz, H. Kirchmayr, N. Pillmayr and H. Nowotny, J. Less-Common Met., 111 (1985) 369.
- 4 J. Diesling, Diplomarbeit, Universität zu Köln, 1985.
- 5 E. Brück, A. Nowack, N. Holn, E. Paulus and A. Freimuth, Z. Phys. B, 63 (1986) 155.
- 6 N.F. Mott and H. Jones, The theory of the properties of metals and alloys, Oxford University Press, 1958.
- 7 M. Kontani, M. Senda, M. Nakano, J.M. Lawrence and K. Adachi, J. Magn. Magn. Mater., 70 (1987) 378.
- 8 E.V. Garapathy, K. Kugimya, H. Steinfink and D.I. Tchernev, J. Less-Common Met., 14 (1976) 245.
- 9 I.P. Semitelou, H. Konguetsof, J.K. Yakinthos and E. Roudaut, J. Magn. Magn. Mater., 79 (1989) 131.